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ABSTRACT 

Spreading modulation waveforms are discussed in general terms, and a 

classification system is described.  Several well-known examples are given, 

and a new, standard set of spreading modulations is introduced.  Spectra of 

all the waveforms are given, and spectral properties are discussed in relation 

to system performance.  It is shown that these properties are essentially 

determined by three waveform parameters, for a large class of spreading 

modulations. 
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I.   INTRODUCTION 

A random spreading modulation is, basically, a means of complicating the 

signal of a communications system in order to make that system more difficult 

to jam.  Like any other electronic counter-counter measure tactic, it 

is a game, whose object is to maximize the cost to the jaiumer of achieving a 

given degradation to one's system.  Absolute immunity to jamming generally 

cannot be achieved, except possibly temporarily, until the opponent figures 

out what you are doing.  The tactic of spreading is approached here from the 

point of view that the adversary knows exactly what you are doing, and is free 

to do his best to degrade your performance. 

The complication introduced by random spreading has two essential 

features: a randomness in the waveform modulation which greatly reduces the 

effectiveness of repeat jamming, and a spreading of the instantaneous 

spectrum, which increases the available processing gain against a given level 

of total jamming power.  Simple frequency hopping, which increases the system 

bandwidth without changing the width of the instantaneous spectrum, is a 

related, and complementary technique, which is not discussed further in this 

study. 

A simple example will illustrate the application of a random spreading 

modulation.  Suppose a communications link, designed for a friendly 

environment, makes use of a signal which consists entirely of simple pulses, 

organized in a way which permits both synchronization and data transmission. 

The pulses all have the same shape (say rectangular) and the same carrier 

frequency, and occur in a burst of some fixed pattern for synchronization. 

Data may be transmitted by a systematic alteration of some pulse parameter, 

such as its transmission time, as in pulse-position modulation.  To add some 

anti-jam capability to such a system, the simple pulse may be divided into N 

equal sub-pulses, or chips, with the carrier phase in each chip either 

reversed (i.e., changed by 180°) or unaltered in accordance with an N-bit 

pseudorandom binary sequence.  This is binary phase-shift keying, BPSK, one of 

the simplest of the spreading modulation techniques.  By the use of BPSK, the 

pulse bandwidth is increased by a factor of N, which is one of the objectives 

of the spreading technique. 
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When BPSK is used in this way, the pseudorandom bit sequence must be 

known to the receiver, where a filter matched to the spread pulse is 

implemented.  It is a major feature of systems utilizing random spreading 

modulations that the spreading bit-sequence is known to the receiver, although 

any modulation technique normally used for the transmission of information 

bits could, in principle, be used as a spreading modulation.  Thus random 

spreading implies a different receiver structure than data demodulation of the 

same waveform, and, most important, a different criterion for performance. 

It is not intended that the bit sequence, or code, used in one pulse be 

used for all, but rather that this code be continually changed from pulse to 

pulse.  In effect, both sender and receiver must have the ability to generate 

the same, unlimited sequence of bits in time synchronism, successive groups of 

N bits being used to "code" successive signal pulses.  Of course, th? sender 

must be able to modulate his pulses with these ever-changing code sequences, 

and more significantly, the receiver must be able to configure a filter, 

matched according to some criterion, to each expected coded pulse.  For the 

spreading modulations studied here, this last requirement presents 

difficulties of widely varying degree.  Such implementation issues will have a 

decisive effect as the choice of modulation in practice, but hardware 

techniques change rapidly, and no attempt is made here to assess the value of 

a modulation scheme from a hardware point of view. 

The example just given is perhaps the simplest scheme that has the 

requisite properties of a random spr ading modulation.  A very general 

definition would consider any scheme which mapped a finite sequence of bits 

into a finite segment of waveform to be a possible spreading modulation 

technique.  We restrict this definition by the application of two constraints, 

W one of practical importance, and one of a simplifying nature, in order to 

define a workable class of waveforms for analysis. 

The first constraint is to limit ourselves to constant-envelope 

waveforms.  The major reasons for this requirement are practical, allowing the 

use of simple power amplifiers in transmitters and repeaters.  Constant 

envelope also allows the maximum signal energy, in a given signal duration, in 

the face of a peak power limitation.  These reasons are often compelling in 
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real system design, and many effective spreading modulations have been devised 

within the constant-envelope constraint.  Other waveforms may be converted to 

constant-envelope form by clipping, either deliberate or inadvertent, but the 

original waveform's spectral properties are usually not improved in this way. 

Subsequent filtering will restore some amplitude modulation, hence it is 

desirable to study constant-envelope modulations which meet the spectral 

occupancy limitations within which the system must be designed in the first 

place.  Spectral occupancy restrictions play a key role in spreading 

modulation performance evaluation, and the general goal is to maximize anti-jam 

processing gain while operating within a given bandwidth or spectral window. 

Since the waveform is to have constant envelope, it can be described by 

its phase or frequency modulation.  Our second constraint requires that the 

waveform be segmented into equal chips, that the phase or frequency modulation 

imposed within a given chip be one of a small number of possibilities, and 

that the choices made in the successive chips depend in a simple way on a 

pseudo-random bit sequence of a non-repeating nature. 

We tend to think of the waveform as built of pulses, as in our simple 

example, each pulse requiring N input bits for its specification.  But, in the 

analysis of spectral properties, we treat N as large, and it is not important 

that the waveform actually be segmented into separate pulses, hence our 

results will be valid for continuous waveforms as well.  Our second constraint 

will be made more specific in Section II, where a classification system is 

introduced and the method of spectral analysis described. 

If a signal structure is indeed built out of pulses, each of which is 

modulated by a random spreading modulation, then other anti-jam techniques can 

still be used as well.  For example, pulse-to-pulse frequency hopping can widen 

the system bandwidth still further, and randomization of the timing of pulses 

according to a scheme available to the receiver can also be employed. 

Quantitative measures of spreading performance have been discussed 

elsewhere^*', in terms of efficiency parameters which measure the loss in 

processing gain (from the ideal value of time-bandwidth product) which results 

from operating in a fixed band against an optimizing noise jammer.  These 

parameters depend only on the average power spectrum of the modulation, and 
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they favor spectra which are flat within an allotted band and fall off rapidly 

outside that band.  A brief derivation of these performance measures is given 

in Appendix A. Interference with other systems, or other users of the same 

system, will place more specific requirements on the spectral density of the 

spreading modulation, in terms of sidelobe levels and spectral decay beyond 

the nominal band.  These are, basically, spactrum allocation constraints, and 

must be considered separately in each case. 

In this study we present the spectral properties of various groups of 

spreading modulation waveforms, without judgment of their relative merits. The 

actual choice in a particular system design will be dictated by many factors, 

including hardware issues and postulated jamming scenarios; but the spectral 

properties of the waveform chosen will play a central role in this choice. 
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II.  WAVEFORM CLASSES AND METHOD OF COMPUTATION OF SPECTRA 

An initial decomposition of spreading modulations is based upon two 

features:  the constancy (or lack of it) of the phase within each chip, and 

the continuity (or lack of it) of phase at the chip boundaries.  Our first 

class consists of the "constant phase" waveforms, in which the carrier phase 

remains constant during each chip, with discontinuous change at chip 

boundaries permitted.  The value of the phase in a given chip is determined by 

a particular subset of the code bit sequence which corresponds to the pulse in 

question.  In the simplest case, we assign the bits to the chips in a 

one-for-one manner, and the only other case discussed here utilizes two bits 

per chip in some way.  The bit, or bits, assigned to a given chip can 

determine the phase absolutely, or control an increment to be applied to the 

phase of the preceeding chip.  When two bits are used per chip, they can be 

two "new" bits for every chip, or a two-bit window can slide along the bit 

sequence, controlling phase in some way.  These possibilities are discussed in 

detail in Section III. 

The other major class of modulations combines varying phase (throughout 

the chip) with phase continuity at chip boundaries.  The waveforms are most 

naturally described in terms of the possible frequency modulation patterns 

employed.  One can have a repetoire of 2 possible patterns for any chip, 

selected according to the values of a set of n consecutive bits in the code 

sequence.  One could then take n new bits for each chip, or slide an n-bit 

window along the sequence, yielding a correlation between successive frequency 

modulation patterns.  An example of this latter group called "tamed FM" has 
(2) been discussed in the literature   as an information modulation, but the 

remainder of this study is devoted to the so-called "binary FM" waveforms, of 

which there are several well-known examples. 

The binary FM waveform uses just one bit for each chip, hence one of two 

frequency modulation patterns is applied.  We further specialize this class by 
r9 the assumption that one of these patterns is the negative of the other (with 

respect to a suitable carrier frequency), so that the frequency modulation in 

the n  chip will be ± <J>(t-nA), where <f>(t) is the basic frequency modulation 

..-.--. — ...... . -.....-. «i. _. . 
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pattern of the waveform, A is the chip duration, and the algebraic sign is 

fixed by the nc^ bit of the spreading code.  If ^(t) is a constant, the 

frequency-shift keying (FSK) waveform results, the simplest example of a 

binary FM waveform.  Binary FM waveforms are discussed in detail in Sections 

IV, V and VI. 

The two other classes allowed by our original division are excluded from 

this study for the following reasons.  The first class would consist of 

constant-phase waveforms with phase continuity at chip boundaries, i.e., 

unmodulated pulses, and these are of no interest as spreading modulations. The 

remaining class allows phase discontinuities at chip boundaries along with 

phase variation within the chip.  The phase jumps of such waveforms impart to 

them the same slow decay of spectral density with frequency as is exhibited by 

BPSK (namely inverse square), which defeats the primary purpose of the 

variable phase waveforms.  It will be shown in Section IV that the asymptotic 

spectral properties are determined by the number of continuous derivatives of 

phase at chip boundaries, and the frequency modulation patterns, <(>(t), of 

different binary FM waveforms are chosen with this property in mind.  To allow 

phase discontinuities *-o occur (deliberately or accidentally) would ruin the 

good features otherwise attainable in the waveform design, and this car. be 

clearly demonstrated in specific cases.  In the binary FM waveforms, the 

frequency modulation function is bounded, and the resulting phase variation is 

continuous over the entire waveform.  If, in addition, the frequency 

modulation function is zero at the beginning and end of a chip, then the 

overall frequency modulation of the waveform is continuous, regardless of the 

original bit sequence, and this leads to faster spectral decay with frequency. 

Further details are given in Section IV. 

Our basic method of computing spectra begins with an explicit expression 

for the waveform as a function of time and the code sequence.  Next, we 

compute the Fourier transform of this time function, still as a function of 

the code bits.  The square of the Fourier transform gives the energy spectrum, 

and the desired power spectrum of the original waveform is obtained by 

dividing NA, the total duration of the signal, which is N chips long. 

Finally, the spreading modulation spectrum is found by taking an ensemble 
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average over the bits of the spreading code.  These bits are treated as 

"purely random", i.e., independent and equally likely to assume either value. 

The "purely random" assumption places some limitation on the 

applicability of our results, but in many applications one strives for an 

approximation to this quality in real code sequences.  This is not a basic 

limitation of the method, however, which would still be applied if the 

statistical properties of the code sequence in use were well enough known. 

The spectra of individual waveforms will vary considerably, depending on 

the actual bits of the code, but the ensemble averages computed here are still 

relevant for the behavior of the system, so long as code sequences change 

continually, as we have assumed from the start. 

Other methods of spectral computation are equivalent, but tend to be more 

difficult to apply.  For example, a spreading waveform can be modelled as a 

stationary random process by extending it indefinitely in time and treating 

the start time of some reference chip as a random variable, uniformly 

distributed over an interval of length A, while the chip spacing remains 

rigid.  One can then compute a covariance function and finally, by Fourier 

transformation, a power spectrum.  Other authors have used Markov chain models 

to describe the sequence of phase variations in the waveform, and these too 

tend to become complicated. 

The essential feature of the method used here is a representation 

theorem, which permits the expression of any binary FM waveform in a form 

formally very similar to the representation of a constant-phase waveform. This 

form permits easy application of the approach outlined above.  The 

representation theorem is proved in Section IV, and the basic spectrum 

calculation is given in Section III. 
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III. CONSTANT-PHASE WAVEFORMS 

A constant-phase waveform, N chips long, is uniquely specified by the 

sequence of carrier phases 6 , 6 , ..., 9  .  This sequence, in turn, is 

determined from an input bit sequence according to an algorithm characteristic 

of the modulation scheme.  The modulation waveform itself can be written as a 

summation of adjacent rectangular pulses, each one chip in duration, and 

having the appropriate values of phase.  The rectangular pulse function is 

defined as 

Po(t) H 
il  ;  0 < t < A 

0  ;  otherwise, 

and the complex modulation function which describes this waveform is then 

N-l  16 
Z(t) - I    e n Po (t - nA)  . 

n-0 

This function vanishes outside the interval 0 < t < NA, and the underlying 

carrier is arbitrary (although practical generation techniques often make use 

of an integral relationship between chip duration and carrier period). 

The familiar Fourier transform of the rectangular pulse is denoted k0(w), 

as follows: 

ko<»>s i /A po<t) • -iwt<it 
o 

-i(üA/2 sin(ü)A/2)  . 
" e (u»A/2) 

In terras of k0(<D), the Fourier transform of the modulation itself is 

NA 
K(co) - / Z(t) e"i(ÜC dt 

N-l   19  nA+A . t 

I      e n  /  P ft - nA) e-iut dt 
n-0      nA 

N-l  1(6 - ntoA) 
A k (a)) I 

n-0 

n 
e 
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The quantity IK(üJ)|
2
 is the energy spectrum of the waveform, and 

(according to Parseval's theorem) 

i-  /  |K(ü))|Zdu) - / |Z(t)|Zdt - NA , 
ZT   -oo o 

*\ 
since |Z(t)| is identically unity.  Thus |K(w)| /NA is the desired power 

spectrum, whose ensemble average is given by 

G(f) - \-L     lK(ü))|
2 

,  ,  N-l 1(6,, - nwA) . 
- A|ko(u3)|

2 I I I    e  n      I2  . 
n»0 

We write spectral densities as functions of ordinary frequency, with the 

understanding that u> = 2irf.  The overbar denotes ensemble average, which can 

be evaluated after the specific dependence of the phase sequence on the code 

bit sequence is given. 
2 

The separation of G(f) into a "pulse factor", in this case, |k0(w)| , and 

a code factor (the ensemble average) is typical of all the spreading 

modulations considered in this study.  The code factor is periodic in 

frequency, with period equal to the chipping rate, f    » 1/A, hence the 

spectral behavior for all constant-phase waveforms, at large frequency (i.e., 

for from band center), is given by the pulse factor, which in this case decays 
-2 

as f  .  Because of our normalization of the modulation waveform, the power 

spectral density integrates to unity: 

1 o(f> £ -  u 

The code factor is expanded as follows: 

J_ | Y ei(6n-no)A)|2 
N  n-0 

1  V   i(em-en)-i(m-n)ü)A 
N    LA n,m-0 
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Jl—(N-l)  * 

where, for £ > 0, 

n-0 

When I  < 0, 

N-l 

la 

N-l-j,   
C  = 1  f  .^'n+i " en> 

a "   N    L 

C - i   T   e1(6n+* " 9n) N n-fl 
and it follows that 

C-t ' Ct> 

and that 

C - 1. 
o 

The numbers, C , form the truncated autocorrelation sequence of the finite, 
19 

random sequence, e n. 

If the phases are statistically independent, and if 

e19n - 0, 

then all the C will vanish, except for C , and the spectral density will be 

given by the pulse factor alone: 

G(f) - A|ko(u))|
2 

A sin2((üA/2) 
2    * 

(u)A/2)Z 

This is the case for BPSK, since each phase angle is equally likely to assume 

either of two values, 180 degrees apart. If the code bit sequence is written 

b , b , ..., b  ., and if each b is a binary variable taking only the values 

±1, then the BPSK phase sequence can be defined by the statement 

e19n - b 

J 

10 
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for 0 < n < N-l.  The same power spectral density describes the QPSK waveform 

(quadriphase shift keying), at the same chipping rate, since QPSK can be 

described in terms of a sequence of 2N bits as follows: 
ie 

e n - J- 
•2 

<b2n + ib2n+l>' 

Four phase values are possible, but the average value of e*9n is still zero. 

If the phases are independent, but if e*9n is not zero, for example if 

ion e n - p  , 

then lines appear in the spectrum.  It is not hard to show that, for large N, 

the fraction 1 - |p|  of the power is found in a spectral density just like 
2 

that of BPSK, while the remaining fraction, |p| , is in a line at to • 0 (band 

center).  This kind of spectral density is undesirable in a spreading 

modulation, hence this case is not discussed in further detail. 

A number of constant-phase waveforms exhibit correlation, at least over 

adjacent chips.  An example is SQPSK (staggered, or offset QPSK), in which the 

correspondence of code bits and waveform phases is best shown by a diagram: 

bn-l 
bn+l 

bn bn+2 

9n-2 9n-l 9n «n+1 en+2 

Here, I and Q refer to in-phase and quadrature signals, which are separately 

modulated by alternate bits, as shown, and then combined to form the resultant 

phase sequence.  From this diagram, we can write 

ie 
n-l 1 

•2 
<bn + ibn-l> 

'« 

ie 
e n - 

/2 
<bn + lbn+l> ' 

.'- 

ie I  fu 

etc. 

n+2 
+ lbn+l> , 
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Only adjacent phases are correlated, and we have 

o1'6-"""1' - I "V + «VA " 'V,' • T • 

since bn bn+k • bn bn+k - 0, for It * 0, and b  - 1.  Similarly we have 

ei(9n+l - en) „ 1 (b "; +ib ^)(b    - ib ,) - i  , 
2   n+2    n+l/v n    n-l'   2 

and this equation is thus true for both even and odd values of n.  We have 

therefore found that 

ct  - 0 ,  Ul > 1 

and 

C - 1 V e1(9n+l-6n) - I M m  C Cl  N !>    e IT   M' 
n-0 

For large N, which is always the case of interest here, we can take C+^ - 1/2 

and thus 

G(f) -Mko(uOl
2 U+^e-^ + e1"*)} 

I -A —V/»>  (l+coso,A) 
(«A/2r 

9A    sin2(tüA/2)  cos2(ü)A/2) 

(ü)A/2)Z 

or 

G(f)  _ 2A    sin2(o>A)     § 

(ü)A)' 

In this case, the result is the same as the spectrum of BPSK or QPSK at one- 

half the chipping rate.  In terms of our diagram, it means that the Q-channel 

signal could be advanced (or delayed) by one chip length, thus aligning the 

bits to produce conventional QPSK with chips twice as long as the original 

ones, all without changing the spectrum. 

12 
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A second example exhibiting one-chip correlation is illustrated in the 

following diagram: 

Q 

I 
bn-3 

bn-2 bn-l bn 
bn-2 bn-l bn 

bn+l 
9n-2 

9n-l en 9n+l 

We call it PQPSK ("Poor-man's QPSK"), and, like SQPSK, the bit rates and chip 

rates are equal.  From the diagram, 

ie 
1 

/2 
(b + ib  ,) n    n-1' 

and 

Ke^, - e ) 
6 - I <Vl + lbn><bn = ibn-l> " i/2  • 

1 

For large N, 

Cj - i/2  , C_! - - i/2, 

and the spectral density is 

G(f) - Alko(u,)|
2 {i+|(e-

ia,A-eiü,A)} 

, sinz(ü)Ä/2)  ,,   ,   AN - A i—=-*" (1 + sin wA) . 
(uA/2)Z 

If 1 and Q channels are interchanged in this example, the second factor in the 

spectral density is changed to (1 - sin wA). 

A final example, which has been called(3) UPSK (unidirectional PSK), 

shows correlation of phase over two chips.  The defining diagram is 

bn-l bn bn+l 

bn-l bn bn+l 
en-2 

9n-l 9n 9n+l en+2 

13 
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1 1 
'1 

and we have 1 1« n     i 

/2   n_1    n_1 

1 
16  ,    i 

e n_1 - -L. (b +Ibn  ) 
/5     n       •' 

ei9n- ^-(bn+1V 

1 
•"^"i" ^l*^' 

1*. 

m 

1 
•*, 

etc.  We evaluate 

e                 -_- (1 + i) 

1 i(9 - 6  ,)     . 
.  «   *-l   - 1 (i + i) 

El 

Bj 

i 
- 

e             - 2    (1 + i). 

\ 
and so on, and also 

L «WW   .1/2 . 
1) This last sequence continues to alternate between the values 0 and 1/2, and we 

find (for large N); 

Cl "1  (1 + 1} * C2 " i/4 ' 

! 
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* 

K 

and hence, after some simplification, 

G(f) - 2A 
8ln (f > (1 + sin u>A) . 
(ü)A)

2 

Again, interchange of I and Q channels in the definition replaces (1+sin uiA) 

by the factor (1-sin wA). 

It is convenient to replace frequency by an angle variable, 9, defined as 

follows: 

9 - uA » 2wfA - 2irf/fchip» 

and to use a corresponding, dimensionless spectral density: 

g(9) = G(f)/A. 

Then g(9) is normalized according to 

^-    I  g(9) d9 - 1 . 
2TT 

•yi 

The spectral densities of the constant-phase waveforms discussed so far can be 

summarized as follows: 

2 
BPSK, QPSK: g(9) . sln (Q/2) 

(9/2)Z 

2 
SQPSK: g(9) - 2-^^ 

ez 

PQPSK: g(9) - 8ln ie{2)   (1 ± sin9) 
(9/2)^ 

2 
UPSK: g(9) - 2 8l" 9 (1 ± sin9) . 

I . 
These spectra are shown in Fig. III-l, where spectral density is plotted 

on a linear scale.  The plots are made from the g(9)-formulas, but with the 

£ abscissa labelled by the ratio (f/f . . ) • 9/2*.  The spectral differences 

here are not significant, from a spreading point of view, and the disadvantage 

> shared by all is the inverse-square decay of spectral density with frequency. 

'i 
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Another variation of the constant phase theme assigns statistically 

independent increments, $ , to the initial phase of each chip of the waveform. 

Then 

n 

n o *•     rm  ' m-1 

and 
i(9   .,  - 9   ) n+Jl v n+Jl        n; (.     r     ,   >, e - exp[i    I    iJ^J     . 

m-n+1 

If the increments, i)^, form a stationary, independent sequence, determined by 

the input bit sequence, then 

e - p  , 
where 

m 
p = e 

The code factor of the spectral density is then given by 

, L ID 
NrÄ N-Ä  A -iJlwA 1 + 2Re i  -=- p e     , 
£-1 

which becomes, in the limit of large N, 

1 - Ipl2 

1 + |p|2 - 2Re(p e-iuA)  . 

In general, the correlation introduced by specifying increments (instead of 

phases directly) leads to ripples in the spectral density, as given by this 

code factor. If, however, p«0, then the BPSK spectrum reappears, no matter 

how many bits are used to specify each phase Increment. 

An interesting case occurs If each phase increment is either ±i|>, 

according to the corresponding code bit.  We can write 

Mil     -b f Tn   nr 

and evaluate 

p - e " • cosij; . 
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The spectrum of any waveform featuring independent phase increments can be 

matched by one of these special waveforms, with appropriate choice of i|>.  The 

code factor, expressed in terms of \J>, is 

 sin f   

1 + cos  ij> - 2co8\|> cos(uA) 

in this case, and we shall meet this factor again, in a similar context, in 

connection with binary FM waveforms. 

In terms of 0-OJA, the complete spectral density for this waveform, which 

we call IPSK (incremental phase shift keying) is 

g(6) - 
sin(8/2) 

9/2 

4   2, 8 in jb 

1 + cos i|/ - 2co8i|i cos8 

Linear plots of g(9) for a range of <|/-values are given in Fig. III-2.  As \Ji-K), 

the spectral density approaches a line at zero frequency (band center), and 

when i|H-w, lines appear at frequencies ±fchip/2 on either side of band center. 

The relative density, G(f)/G(0) is shown, for a range of «(»-values, in Fig. 

III-3, expressed in dB.  The null positions are independent of i|>, ana t'z  slow 

decay with frequency is evident.  It should also be noted that sidelobe levels 

increase with increasing values of \p in this range. 

a 

d 
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IV.  BINARY FM WAVEFORMS 

A binary FM spreading modulation is completely specified by its 

characteristic frequency modulation function, $(t), which is defined only over 

the interval 0<t<A, one chip in duration.  During the n  chip of the 

waveform, which starts at t-nA, the instantaneous frequency is defined to be 

•(t) - bn *(t-nA), 

where bn is the n
tn bit of the spreading code.  The. initial phase (at t-0) is 

taken to be zero, so that the modulation waveform is 

Z(t) - e1*^, 

where 

t . 
•(t) - / *(s) ds. 

o 

The last chip ends at t»NA, and Z(t) is taken to be zero outside the interval 

0<t<NA. 

The characteristic phase variation is 
t . 

4>(t) - / <Ks) ds, 
o 

and we define 

This parameter, \p, if of basic importance in the study of these waveforms; it 

represents the magnitude of the phase change which takes place across every 

chip.  The actual phase increments accumulate, with appropriate signs, so chat 

the waveform phase at time t«nA, which we call 9 , is given by 

8 - *(nA) - (b + b, + ... b  ,)*. 
n      '    o   1       n-1 T 

UZ th 
rf Of course, 6 «0, and within the n  chip, we have 

where 

*(t) - 9 + b  *(t-nA) , 
n   n rv     ' 

nA < t < (n+l)A. 
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1 

a 

( 

We assume now that sin\fi does not vanish, deferring discussion of this 

special case (where ty  is an integral multiple of ir) until later. With this 

restriction we introduce the "pulse function", P(t), which is non-zero only 

over an interval two chips long, hy the equations 

! 

cscij; sin[i|>-<|>(t)];       0<t<A 

P(t)  - csci|> sin[<|>(t + A)];  -A<t<0 

0 ;  otherwise   . 

Note that P(t) is continuous, being zero at t - ±A and unity at t»l, but not 

necessarily symmetric.  Finally, consider the waveform 

N  i9 
Z (t) = I    e m P(t - mA) , 

m-0 

where 6 - (b + ... + b , H as before, 
m    o        m— i 

For a time, t, within the nth chip (i.e., if nA < t < (n+l)A), only the 

terms m-n and m-n+1 of the sum defining Zj(t) contribute, and then 

16 19 
Z (t) - e n P(t-nA) + e n+1 P(t-nA-A) 

i9 
- csci|» { e n sin[i|i-<|>(t-nA)l 

i6 
+ e   l  sintf(t-nA)]}. 

But 

and 

i6 .,    16 + ib ij; 
n+1     n    nr 

e     - e 

ib if» 
e    - cos(b ij») + i sin(b i|») 

- co8i|> + ib    sinijj, 

since bn is a binary variable. We therefore obtain 
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16 
Z  (t)  - csct e    n  {sin[ij>-<j>(t-nA)]  + (cosi|H-ib siniJi)sin[<t>(t-nA)]}   , 

or 

<;'. Zx(t)  - e    n  {cos[<J>(t-nA)]  + ibn sin[<|>(t-nA)} 

18    + ib    <J>(t-nA) n n T 

- e 

- Z(t) 

This equality of Z(t) and Z (t) holds within every chip, since the inclusion 

of the term m=N in the sum defining Z (t) validates our derivation for any 

value of n, from zero through N-l (note that 8„ is just the phase of Z(t) at 
N 

time t=NA).  At chip boundaries, Z(t) and Z (t) are still equal, since 

16        16 
Zx(nA) - e 

n P(o) - e n . 

The modulation function, Z (t), is zero when t < -A and when t>(N+l)A, 

and thus Z(t) and Z (t) differ only during the two intervals, each one chip 

long, which precede and follow the original time interval over which Z(t) is 

non-zero.  The new function is not constant-envelope in these "extra chips," 

but for large N their presence cannot have a large effect on the spectral 

properties of Z.(t), and henceforth we use the definition of Z (t) as a 

representation of Z(t), dropping the subscript. From another point of view, 

t>*e use of the sum for Z(t) is not a serious approximation because Z(t), as 

originally defined, is only an idealization of the waveform likely to be 

produced in practice. 

For many purposes, including the computation of spectra, the sum 

representation of Z(t) is very much more convenient than the original 

definition.  In fact, the general derivation of Section II needs only one 

change to apply to binary FM waveforms.  That change is to replace P0(t) by 

P(t), and the transform, k (o>), by the new transform 

:'•'"* A 

k<») =   T   I    p<fc> e"iü,tdt. 
A-A 
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I 1 • 

Then 

n N  lie - nwAl * 
G(f) - &|lc(U)|

2 • I | I    e  n      I   , 
: 

N    n-0 
'• 

i. 
a product of pulse factor and code factor, as before. 

P 
r. -* 
i*. - 

%•« •" 

i 

The code factor is simple, since 

1(9 _,_. - 9 J    Ifb + ... + b ^„   .)4 
e          • e 

ib <|>   ib ^.ip        ib ., ,* nT     n+1           n+Ä-lr 
• e     • e       • • • e 

r *' "• 

- (C08\|>)   . 

This follows from the independence of the bn and the identity 

ibili e    - cosi|/ + ib sinij; • cos\|i , 

:!"•'• for any binary variable.  For large N, we get 1 Cz  - (cos*)* 

for £>0 and 

• 

til c* - C_A - (cos^)
1*1 

;.;. for negative I,    The rest of the evaluation of the code factor has already 

been carried out in Section III (waveforms with independent increments), and 

•*-"*' we find 
bu 

N  1IB - nuAj , 
£il - n    v 

n-0 

^  n    -iAwA          sin t 

£—N             1 + cos i|> - 2cosi|/ cos coA 

iipi 
1 . '- 24 

& 
A 

- 
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The integrated part vanishes because P(t) Is continuous throughout the 

interval, including the point t-0 and the points t-±A, where it is zero. 

However, P(t) may be discontinuous at these points, and a repetition of the 

procedure yields 

Our derivation is a bit heuristic, but the result is easily established by a 

careful analysis, so long as |cos\|/|<l. 

This code factor is unity for any binary FM waveform in which \J; is an odd 

multiple of n/2, and most of the modulations suggested for spreading purposes 

share the value 4>-IT/2.  It turns out that this choice leads to the simplest 

receiver design, if the matched filter is realized passively, but, as we shall 

see, other values of iji are desirable for shaping spectra for maximum spreading 

effectiveness. 

The asymptotic behavior of the spectral densities is determined by the 

pulse factor, as it was for constant-phase waveforms, but much greater variety 

is now possible.  The discontinuous pulse function, P (t), led to an inverse 

square decay in the former case, but all binary FM waveforms have spectral 
-4 

densities which fall off at least as fast as f  (it is assumed that the 

characteristic frequency modulation function, $(t), is bounded).  To verify 

this property, we write 

-iut  .1 d_ _-i<ot 
(i> dt 

e    - - — e   , 

and carry out a partial integration in the defining equation for k(u): 

.  A       . v 

g k<») - 4 / Ht)  a"1<wdt 
A -A 

i   Lr  ....    .f   -iut 

—A 

m"SK  / p(t) e  dt* 
-A 
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is 

w A -A 

1  / P(t) e-1(ütdt 
0) A -A 

+ -^- {P(A-)e    - P(-A+)e 
o> A 

- P(0+) + P(0-)}  . 

The notation P(t±) stands for the limit of P(t±e) as e-K), and 

we see that k(u) varies as f~2 (hence G(f) goes like f~*) if P(t) is 

discontinuous at t-0 or t-±0, and if P(t) is bounded within (-A,A). 

If P(t) is also continuous, the argument is repeated again, and so on, so 

that one sees that the asymptotic properties of G(f) are directly correlated 

with the smoothness of the pulse function, P(t), at the origin and at the ends 

of Its range. 

The smoothness of P(t) depends, in turn, on the corresponding properties 

of $(t).  For instance, in the interval -A<t<0, 

and hence 

I* and 

Similarly, 

and 

P(t) - cscip co8[(|»(t+A)] *<t+A) , 

P(-A+) - cscij« <)>(0+) 

P(O-) - cot\|» 4>(A-)  . 

P(CH-) - -coti); <j.(0+) 

P(A-) - -CBcty  <|>(A-)  . 
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If P(t) is to be continuous, i.e., zero, at t-tA, then ^(t) must vanish at 

both ends of its range of definition.  This, in turn, makes P(t) continuous at 

t-0. If 4>(t) vanishes at t-0 and t-A, then 

P(-A+) - csci|> 4>(0+) 

P(A-) - -csci|; <fr(A-) 

and so on, hence the controlling parameter in this matter is the order of the 

zero of <j>(t) at t-0 and t-A (or the lower, if these are unequal). 

It is easy to see why this should be so, by considering two adjacent 

chips.  At the chip boundary the instantaneous frequency changes from t^(A-) 

to ± $(0+), depending on the relevant bits, hence the more smoothly $(t) 

approaches zero at the ends of its range the smoother will be the transitions 

from one chip to the next. 

To summarize this relationship, we can say that if <f>  (t) is the lowest- 

order phase derivative which fails to vanish at t-0 and/or t-A, then k(o>) will 

decay as f   , and the spectral density as f    , at great distance from 

band center.  This statement is also true for constant phase waveforms, which 

correspond to n-0, while for all binary FM waveforms, n>l.  The parameter n, 

along with f, has a major effect on the character of the spectra of binary FM 

waveforms. 

We conclude this section with a discussion of some special values of t|i, 

the phase shift per chip.  First, let i|(-ir/2, which is typical of many 

waveforms used for the transmission of information.  As noted, the code factor 

is unity for these cases, hence the spectral density of the waveform is 

identical to that of the pulse factor itself.  The basic representation also 

simplifies, since 

elb*/2 - ib 

for any binary variable, and therefore, for n>0, 

ie 
n  .n . .     . 

e   - i b b, ... b  , . 
o 1     n-1 
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We can define a new bit-sequence, an, as follows: 

ao-1' 

al - bo " aobo ' 

a2 - b0bj - .jbj. 

a » b  ...b  , • a  ,b ,, n   o     n-1   n-1 n-1' 

and then write 

N 
Z(t) - I    in a P(t-nA)  . 

n-0    n 

The a-sequence is purely random if the b-sequence is, and the b's are 

recovered from the a's by means of the relation 

b - a a ,, . 
n   n n+1 

The new expression for Z(t) is particularly useful for the study of techniques 

for generating these waveforms and for the design of matched filters for the 

corresponding receivers.  The case \p- -IT/2 leads to the complex conjugate of 

this representation for Z(t). 

When I^-KTT, the whole analysis must be changed, and we go back to the 

original definition of Z(t), namely, 

ie + ib d>(t-nA), 
Z(t) - e 

for values of t in the n  chip.  But now, 

ib*   ibKw     ,„ s       ,   ,NK e r  - e    - cos(Kn) - (-1)  , 

hence 

n  , ,xnK e   - (-1)  , 

which is independent of the bit sequence.  Then 

Z(t) - (-l)nK {cos[<fr(t-nA)] + ibn sin[(|.(t-nA)]} 

within the ntn chip, and the I-component is deterministic. If we define 
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A(t) - cos[$(t)] Po(t), 

B(t) - 8in[4.(t)] PQ(t), 

where P (t) is the rectangular pulse function defined in Section III, then we 

can write 

N_1      nV 
Z(t) -  I     (-l)nK A(t-nA) 

n-0 

N_1    nir 
+ i I    (-l)nK b B(t-nA) 

n-0 

=  X (t) + iY(t)  . 

In terms of the pulse function Fourier transforms: 

and 

k (•) E 1 / A(t) e"iü)t dt 

\    I    cos[*(t)] e"lü,tdt 
-A 

M"> * T  / B(t) e-lü)tdt 

I / 8in[*(t)J e"lu)tdt , 
-A 

as 

<M 
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we obtain 

K(u)  - /    Z(t) e"lü,t dt 

N-l 4 A 11    /   \     V     /i \n^    -lnom Ak (a>)     1     (-1)       e 
n-0 

+ Ak (U)  ^    (-l)nK b e-lnü,A 

y      nV 

KX(üJ)  + iKy(üi)   . 

The spectral density is now 

G(f)-^  iKCo,)!2 - A_ lKx(u>)|
2
+^ |Ky(u,)|

2  . 

In the first term, we evaluate 

and hence 

N_1   „v  <„,,A   -1 TT («***)  8in I (<oA-HOO 
I (-l)nK e-lnuA - e   2 •         ?   , 

n-0 sin -± (uA+Kn) 

Vf>' is 'V">|2 

,   sin2 -^ (wA+Kir) 
Alk («)r 

N sin2 -i (uA-HCit) 

For large N, the second factor represents a sum of 6-functions at the points 

WA+KTT - 2Lir, for integral L, and G (f) becomes a line spectrum.  In the usual 

case, all but a finite number of these lines are cancelled by zeroes of the 

factor, k (u). 
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The Q-component term represents a continuous spectrua: 

Gy(f) ä   h lKy(u)|2 

SV 

:•-. 

a 

-.1 

»I 

- A   |kU)|2     l|Nfb    e-^^l2 
y
 N    n-0 

- A|ky(ü))|2   , 

in view of the independence of the bits in the code sequence. 

Since spectral lines are very undesirable in a spreading waveform, the 

analysis of these cases is carried no further.  It is worth noting, however, 

that upon squaring, the phase modulation of a waveform is doubled, so that a 

spreading waveform with a given value of f will look like a waveform of the 

same type, but with double the iji-value, after passing through such a non- 

linearity.  Thus a waveform, like MSK, with i|>-w/2, will yield lines in the 

spectrum if squared, and this could be undesirable from the point of view of 

signal detection and frequency determination by a potential jammer. 

4 
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V.   TYPICAL BINARY FM WAVEFORMS 

The simplest binary FM waveform Is FSK (frequency shift keying), defined 

by the statement 

<j>(t) - constant. 

The constant value of <j> may be written <|i/A, and the carrier frequency is 

increased or decreased by this amount during each chip, according to the sign 

of the corresponding code bit.  Since 4>(t) is never zero, we know that the 
-4 

spectral density will behave like f  (n-1) as fx». 

The FSK pulse function, P(t), is shown in Fig. V-l for various values of 

<|>.  The special case, ty-n/2,   is the familiar MSK (minimum shift keying) 

waveform, distinguished here by the continuous slope of P(t) at the origin. 

All binary FM waveforms having iJ>-ir/2 share this latter property, due to the 

factor cot\|> in the expressions for P(0±).  However, the slope discontinuity of 

the pulse function at t»±A is then the determining factor for asymptotic 

spectral behavior. 

The Fourier transform is easily evaluated.  After noting that 

we write 

P(t)   - csci|; sin(i|/ - -^-H»)   , 

k(ü))  - £^£ •   2 / sinU- \ il)lcos  ut dt 
A A 

O 

CSCl|> 

A 
/     {sin(i|> - "I 4 • ut)  + sin(i|/ - j ^ - u>t)} dt 
o 

or 

k(«) - rife v   '       sin\(; 
cosij; - cos  üiA 

(u)A)2  -  i((2 
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2 
We combine |k(w)l  with the code factor and express the result In terms of the 

angle variable, 6-ci>A, and the dimensionless g(6) - G(f)/A, as before: 

g(6) - 
1+COS    lj>  -   2cOSlJl   C08Ö 

Plots of this function on a linear scale are given in Fig. V-2 for a wide 

range of \|i values.  The effect of the denominator of the code factor is 

obvious, as it was in the case of IPSK, and as \Ji approaches if or zero, the 

spectral density acquires lines. 

It is apparent that g(6) can be made fairly flat in its "mainlobe", by 

proper choice of \|>, and this is shown in Fig. V-3, where g(6)/g(0) is plotted 

in dB, for a narrower range of Rvalues.  It should be noted that the first 

sidelobe increases steadily with increasing i|>.  In Appendix A, two quantitative 

measures of "spreading efficiency" are introduced, and It is shown that these 

quantities are optimized, in the case of FSK, for ljr-values near those which 

produce good "flatness" of the spectral density, in spite of the effect on the 

first sidelobe.  Those performance measures deal with spectral occupancy 

constraints in a very simple way, and in some applications the sidelobe level 

could have more significance. 

The expected behavior of g(6) with large 9 is shown in Fig. V-4, for a 

wide range of ljr-values.  The quantity plotted is log R(f), where R(f) Is the 

fraction of the total power which lies outside a band, of width 2f, centered 

on the carrier.  In other words, 

\1 • J) G(f) f? 

where 8 - 2irA.  These curves are obtained by numerical integration. 
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The SFSK waveform (sinusoidal FSK), originally introduced^*) in the 

special version with ^--rr/2, is defined by the frequency modulation pattern 

•(t) -| [1 - cos(2irt/A)] . 

• •• 
Not only is <f>(t) zero at t-0 and t-A (unlike FSK), but <J>(t) vanishes at these 

"8 
points also.  Thus n-3 and the spectral density will vary as f  as f+».  The 

SFSK phase variation is 

•(t)  - H -| -   —    sin(2irt/A)}   , 

which has the property 

•(A-t) - * - $(t)  , 

as a consequence of the symmetry of $(t) about the midpoint, t-A/2.  From the 

definition of P(t) we see that this symmetry of $(t) also implies symmetry of 

the pulse function about t-0. These symmetry properties are shared by all the 

binary FM waveforms discussed in the present study. 

Since P(t) is even, the Fourier transform, k(u>), is computed from the 

expression 

k(w) - -^^ / sin[i|» - *(t)] cos ut dt 
o 

A 
^£S /  {sin[* - (I - tt)t + -L sin(2»t/A)] 

o 

+ sin[\p - (-| + u)t + 1^- sin(2wt/A)]> dt. 

(4) 
Following Amoroso  , the integrand can be expanded in a series of Bessel 

functions, after which term-by-term integration yields a rapidly convergent 
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1 i 

<• 

series.  However, k(u>) can be computed equal simply by numerical integration, 

since the range of integration is finite and the integrand is oscillatory, so 

that high accuracy can be obtained with a modest number of points.  Numerical 

integration has the advantage of applying equally well to all binary FM 

waveforms, and the procedure is systematized and described in Section VI. 

Spectra obtained in this way are shown in Figs. V-5, V-6 and V-7, which 

are analogous to corresponding plots for FSK.  The effectiveness of if  in 

controlling flatness is again seen here, as well as the anticipated behavior 

at large values of f.  A perhaps unexpected result is the relatively large 

first sidelobe, whicb is in all cases greater than that for FSK with the same 

Rvalues.  This appears to be a penalty associated with increasing values of 

the index parameter n, as we shall see in more detail in Section VI. 

Two examples of waveforms with index parameter n-2 (G(f) ~ f~6) are 

discussed next.  We call them waveforms A2 and B2, and they have been 

briefly discussed in the literature  . 

Waveform A2 is defined by the frequency modulation pattern 

#(t) 2A sin(irt/A) , 

with the corresponding phase variation 

1 4>(t) -| [1 - cos(nt/A)] 

M 

t$ 

Clearly, n-2, since $(t) is itself the highest derivative of phase which 

vanishes at both ends of the chip interval.  This waveform is similar to SFSK 

in the sense that its frequency modulation pattern is expressed in terms of 

trigonometric functions, but it is one degree less smooth at the chip 

boundaries.  Spectral plots on linear and dB scales are given in Figs. V-8 and 

V-9, respectively, and Fig. V-10 shows the cumulative spectra in the form of 

plots of log R(f).  The general behavior is similar to FSK and SFSK, and the 

magnitude of the first sideiobe is intermediate between these two. 

Our second example having n-2, waveform B„, is defined by the frequency 

modulation pattern 
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N 

(4i|;/A)(t/A)   ;   0 < t < A/2 

(4*/A) (l- |) ;   A/2 < t < A 

This function has a triangular shape, instead of the half sinusoid of waveform 

A , and features a discontinuous derivative at t«A/2.  This discontinuity is 

of the same order as those at t-0 and t-A, and therefore does not alter the 

expected character of the asymptotic spectra.  The phase variation is 

2i|>(t/A)2       ;  0 < t < A/2 

i   - 

<|;[l-2(l-t/A)2]  ;   A/2 < t < A 

and the spectra are presented in the same three forms as before in Figs. V-ll, 

-1 

2* 

V-12 and V-13.  These latter are closely comparable to the plots for waveform 
A 

The normalized frequency modulation patterns, -y  <j> , of the four spreading 

modulations discussed in this section are plotted together in Fig. V-14, and 

the corresponding pulse functions are illustrated in Fig. V-15 for the special 

case ip-ir/2.  In this latter case, we have 

Icos[>(|t|)]    ;    It I < A 

0 ;   otherwise, 

which is direct generalization of the well-known expression for MSK. 

The four waveforms are further compared in the Table V-l. 

TABLE V-l 

SIDELOBE LEVELS 

Waveform n SL (n/2) SL(<|0 * 

FSK 1 -23.0 dB -18.2 dB 5n/8 

A2 
2 -20.6 dB -17.6 dB 19*/32 

B2 2 -20.0 dB -17.2 dB 19it/32 

SFSK 3 -18.7  dB -16.3 dB 37n/64 
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The column SL(IT/2) gives the magnitude of the first sldelobe of each waveform 

for the choice i(>«ir/2.  The column SL(<|;) gives that sldelobe level for a value 

of ty  which might be chosen to optimize the mainlobe spectral flatness, and the 

corresponding value of ty  (essentially an eyeball choice) Is shown In the last 

column.  First sldelobe levels are plotted as functions of \|> In Fig. v-16. 
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VI.  POLYNOMIAL FM WAVEFORMS 

It is apparent from the spectra of the waveforms studied in Section V 

that the parameters i|» and n have a major influence on spectral properties and 

that waveforms such as A and B , with the same n-value, have very similar 

spectra for equal values of i|u  In order to study the effects of these 

parameters systematically, a special set of waveforms has been devised, with 

one member for each value of n.  The other parameter, ty, is simply a scale 

factor for the characteristic frequency modulation pattern, as usual. 

To control the smoothness of tj>(t) in a convenient way, we make use of 

simple polynomials, and postulate the general form 

^.iyt/u-Mi-ir1. 

The phase function itself will be proportional to t near t«0, with an 

analogous behavior near t-A, hence the first phase derivative which fails to 

vanish at these points is the n  .  Thus the subscript correctly corresponds 

to the value of the index parameter itself.  The frequency modulation patterns 

are symmetric about t«&/2, and hence the pulse functions will be symmetric 

functions of t.  These waveforms are not the same as the polynomial 

modulations discussed by Simon  . 

The phase variations are obtained by integration: 

•n^'K /(''/A)«-1 (»-iT1* 
o 

- 1» Kn  / Kn'1   (l-x)n_1 dx. 
o 

n 

Since <j> (A) must equal i|>, the constants K are determined by the requirement 

1 - K  / xn_1 (l-x)n_1 dx n 
o 
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4 

1  ,  20"1 

-ir J  (i?-)  du 
"-1 

Kn   */2        9n 1 
--5=1 /  (COBS)2"-1 de . 

4    o 

This is a known integral, and we find 

„    (2n-l)l      f2n-l^ 
n   2     '•n-l J  * n  [(n-l)!]Z      n 1 

It should be noted that for n-1, the waveform is simply FSK. 

We call these waveforms "polynomial FM" waveforms, and denote them by the 

symbol PFM .  The normalized frequency modulation patterns for the first five 

waveforms are compared in Fig. VI-1.  In Fig. VI-2 we compare these patterns 

for PFM , A and B , while Fig. VI-3 compares PFM with SFSK.  From the 

similarity of those frequency modulation patterns sharing a common value of n, 

we infer that our waveforms will provide a representative set, covering the 

entire class of binary FM spreading modulations. 

The computation of spectra by numerical integration is facilitated by a 

change of variable which takes advantage of the symmetry properties of the 

<frn(t).  For any frequency modulation pattern symmetric about t-A/2, we will 

have the corresponding property 

<fr(A-t) - i|> - •(t), 

and the pulse function will be even in t.  From this last fact, we can write, 

a8 before, 

k(a>) - j   I  P(t) cos ut dt , 
o 

or 

2 A 
sinij» k(o>)  - -T / sin[i|;-<fr(t)]  cos <ut dt 

o 

54 

— I . • . • . . -      -      .••.-•.-•...-•• .'•».' .."»I .--..A,     . ;.j    _.   jv^   •*    .-    _-.-W_.V •_••-•.•_ .'. » 



»     W" •- 

p 

- 

I 

3 

! 

CO 
I 

VO 

ID 
I 

l 

•H 

CM 
I 

VO 

ir> 

(U 
4J 

« 

g 
•H 
4J 
CO 

I 
M > 

•H 

U 
c 
3 
cr 
oj 
u 

CO 
I 

I 

ir\    •&      W CM       jc 

£   £     6       £       o* 
0U        0L| £< PU 

lO 

m 

i 
M 
> 

do 
•H 

I 
M 
> 

55 

-^£„     .-   . --•   - .-_ 

k 
H>-A..» .* ».*•  *.....t1  .<••. ».•..  *   —"   -   .<• 

- 



Lv * "  *•"      • ---••--.-..•..• -•.-.  • ••---..-,..•_•_.•......_._..... 

* 

1|                 ml    J  {sin[•-•(t)-Küt] + «in[*-+(t)-iot]}dt  . 
o 

. 

Now 

1                   •(!*)-! 
is an odd function of x, hence we introduce the new variable, u, by means of 

:/                     t -| <U«) , 

»•>.       or 

tC                         2t ?.>                                                                                                               U  - -T 1  . 
It  "'                                                      & 

This variable ranges from -1 to +1, and we can put 

£                    #(t) -*§+f)  l|tl +h(u)]  . 

|         The new function, h(u), is an odd function of u with the boundary values 

:•;'.:                             MO) - o, MI) -1, 

'•\]                     and it describes the phase variation over half a chip in a normalized form. 

Si        In terms of the new variable, u: 

p.« 

gi                    sin* k(*> - \ J {.ln[| - | h(u) + f + «fi] 

1 
+ sin[|-|h(u)-f -«fi]}du . 

i 

>**;        We now separate into even and odd functions of u: 

• 
L2  2   2       2 J 

4 
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.-.'• 

- sin(^) co. [*(u) " g^] 

K; 
- cos (J=S_) sin [y '   ] , 

and 

. •". 

ä 

i--,' 

K. • 

sln[| - — - | h(u) - -j-J 

ij^uAi ö rt(>h(u) + (üAu-i sin (——) cos [ 
2 

. C08 (jfcS*) 8ln ^h(u) •ho.Auj 

The odd terms vanish upon integration, and we obtain the desired result: 

sin*k(u,) - sin(^) / cos [Mn> + "*] du 
o 

+ 8ln (Jfe+UJA) / C08 (^(">2- *>Au) du . 

o 

In terns of 8-wA and the dimensionless spectral density, g(8), we have 

2 

g(6) 
[»ln(Y) f+(6) + sin gg) f_(8)] 

1 + cos i|> - 2cos\|> C08© 

M 

where 

f±(0) , / co. [*h<u> * 9u] du 

m 

These last Integrals are easily computed numerically, and as few as 16 points 

yield, adequate accuracy for most purposes. 
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To find h(u) for a given waveform, it is simplest to begin with its 

derivative, h'(u), which satisfies 

i(t) -|h'<u>£- |h.(u) . 

For the PFM waveforms, we write h*n(u) for the function corresponding to 

4> (t). Since 

t        1 + u 
A "  2 

we have 

.j, n-1  ,  n-1 

or 

n *• 2 

4 

The corresponding phase function is 

4n X *-0  *        o 

or 

Kn  n_1 

F* " Jo 
K«  n-1 „ i r M 

P       It can be shown that h (1)-1, as required, and the first five polynomials are 

'y listed here for reference: 

58 

* • * "*- -»-•-'.-•-•-. -S ^V-'V _ »_• , . _»_', »'..^-V- - -^-  - •-'•>-• '- «-" •-•.w.i^ - . . . .   „j, .... .* ..... A.-.... ....      ..        .... " Ji,1 m : 



». •. «. ». «. »—vv *.''.—' •••••••-•-.--»*;*•••»•• . »—•.•.*»—•—••—" _ • : r t—i—^r-1-—• j •»!•;•' ,*r •• " r -" • - - - 

.- 

J 

h^u) - u 

h2(u) - \  (3 - u2) 

h3(u) - ^ (15 - 10u
2 + 3u4) 

h4(u) - j^  (35 - 35u2 + 21u4 - 5u6) 

h5(u) - -^ (315 - 420u
2 + 378u4 - 180u6 + 35u8) . 

For comparison, the h-functions corresponding to the other waveforms studied 

in Section V are as follows: 

iru- 
Uaveform A  : h(u) - sin (—) 

Waveform B  : h(u) - u(2 - |u|) 

SFSK :       h(u) - u +— sin(iru) . 
IT 

The PFM waveforms exhibit the same kind of spectral behavior that we have 

seen in FSK and the other examples of Section V.  For very small values of \\>, 

all the spectra become narrow lines at band center (f-0), and as \JJ approaches 

the value ir, in all cases spectral lines appear at u>A - ±ir (i.e., f»± f . . II), 

The interesting region lies between these bounds and in the plotted spectra, \p 

is confined to a range of values between TT/2 and 11 IT/16. 

The plots in Figs. VI-4 through VI-13 show spectra for waveforms PFM^ 

(FSK) through PFM .  The FSK spectra are inculded again for comparison.  For 

each waveform, linear plots out to f-f , ,  and relative spectra (in dB) out to 

f«2f . .  are given.  In each case, \|> ranges in increments of IT/32 from the 
cnlp 

value TT/2 through 11 TT/ 16.  The first sidelobe levels are shown, as functions 

r9 of i|/, in Fig. VI-14. 

-\ The concept of spreading efficiency is discussed in Appendix A as a measure 

of the processing gain attainable against an optimizing noise jammer, compared 

to the nominal time-bandwidth product available to the system.  It is shown 
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there that FSK waveforms exhibit a maximum in spreading efficiency for a 

particular value of n>, and that this value corresponds closely to the 

"flattest" spectral density. The same behavior is shown by all the PFM 

waveforms, and for each of these a ijj-value has been chosen which identifies 

the flattest member of the set of spectra, as judged by eye. 

First sidelobes levels are shown in the following table for each of the 

first five PFM waveforms, for two choices of \\>,  namely IT/2 and the value (also 

listed in the table) which was chosen for spectral flatness.  This table may 

be compared directly with Table V-l. 

TABLE VI-I 

PFM SIDELOBE LEVELS 

Waveform SL(w/2) SL(t) • 
PFMj -23.0 dB -18.2 dB 5u/8 

PFM2 -20.9 dB -17.8 dB 19TT/32 

PFM3 -19.2 dB -16.7 dB 37TT/64 

PFM. 
4 

-18.0 dB -16.0 dB 9IT/16 

PFM_ -17.3 dB -15.1 dB 9ir/16 

These sidelobe levels are plotted in Fig. VI-15. 

The steady increase in sidelobe level with increasing n represents 

another tradeoff in spectral properties, this time between near-in and 

asymptotic spectral behavior. 

Bfl The cumulative spectra of the PFM waveforms show the same kind of 

variation with ijj as do those of the four waveforms of Section V.  In Fig. 

"/.-, VI-16, the cumulative spectra of all five PFM waveforms are shown, all for the 

i,\ value i|i"Tr/2.  Figure VI-17 is similar, but in each case, the «(»-value given in 

tip Table VI-1 is used, hence this plot compares spectra which are very similar 

(and flat) in the near-in portion.  The growth of near-in sidelobes is clearly 

K«* seen, together with an increase in the value of frequency at which asymptotic 

,y, behavior begins to be evident. 
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It is interesting to consider the effect of letting n become very large. 

In this limit the frequency modulation pattern, <)>n(t), approaches a delta 

function at mid-chip, and the phase will make an abrupt jump by ±i|i.  By 

forcing more and more smoothness on 4>(t) at the chip boundaries, we have been 

led to a discontinuity (in the limit) at t-A/2.  This limiting waveform is just 

IPSK, with displaced chip boundaries, which has an asymptotic spectral density 

proportional to f  .  The apparent paradox, that spectra behaving like f 

approach IPSK, is resolved by the growth of all sidelobes with increasing n, 

and an increase in the values of f where "asymptotic behavior" really begins. 
-2 

In the limit, the sidelobes continue high (in fact going like f  ) for all 

reasonable values of f. 

Our final plotö. in this section compare waveforms with equal values of n. 

In Fig. VI-18, cumulative spectra of Waveforms A , B„ and PFM are shown, all 

for i|;-n/2, and in Fig. VI-19, SFSK and PFM are compared in this way, also for 

<|>=w/2.  It is clear that the differences in spectra of waveforms having the 

same values of both n and t|/ are small, and this is also true when these 

waveforms are compared with shared values of <|> other than TT/2.  These results 

appear to justify our assumption that the PFM waveforms provide a 

representative, set with which to explore the spectral properties of binary FM 

waveforms in general. 
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VII.  WAVEFORM COMPARISONS 

If a given waveform has been selected for a particular application, the 

final choice which must be made concerns chipping rate.  It is a mistake to 

choose the chipping rate equal to the nominal available bandwidth, since this 

may not optimize performance.  Against an optimizing noise jammer, the 

performance of a waveform (coupled with a matched-filter receiver) is measured 

by its noise-equivalent-bandwidth, or NEB.  If the peak of the spectral density 

of a particular spreading modulation occurs at frequency fm, then by the 

definition already given, 

00 

G(f ) • NEB -  / G(f) d«/2ir . m        -L 

By our normalization, the right side is just unity, and also 

G(f ) - Ag(6 ) , 
m       m 

where 6 is thr corresponding argument of the spectral peak.  Therefore we have 
m 

gCQm) A NEB - 1 , 

or 

NEB       1 

chip    s m' 

For many of the waveforms discussed in this study, 6 occur» at the origin, 

and in any case this ratio is an important attribute of the waveform.  This 

quantity, which we call the "chipping factor", treasures the amount of NEB (and 

hence performance) and we get per megahertz of chipping rate.  In this 

discussion, system bandwidth is unrestricted. 

For BPSK, the ratio of NEB to chipping rate is unity, and no waveform 

discussed in this study exceeds the value 1.3.  In all the waveforms studied 

here, values greater than or equal to unity can be attained, by choosing a 

value of ty which yields a flat spectral density in the mainlobe.  For FSK, this 

is illustrated in Fig. VII-1, in which NEB/f . .  is shown as a function of i|>. 

It should be noted that beyond a certain value of <|> (namely 1.9905 radians), 

."• 
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the spectral peak moves away from the origin.  For FSK, the peak value attained 

is exactly unity.  Similar results are found for all the waveforms and Fig. 

VII-2 shows the same data for several, including IPSK, which yields the highest 

ratios found. 

To choose f . .  for a given waveform, some spectral constraint must be 

imposed, otherwise NEB can be made indefinitely large.  The chipping rate is 

simply a scale factor on the frequency axis, since 

f  f    JL 
" chip 2IT » 

and the spectra depend only on 6.  One way of recognizing a spectral constraint 

is embodied in our spreading efficiency parameter, discussed in Section VI.  In 

that measure, it is simply assumed that all energy outside a fixed band is 

filtered out.  More realistic models should be compared to the waveform spectra 

in each individual case, before a decision is made for a particular system 

application. 

When two different spreading modulations are being compared, it makes 

sense to compare them with chipping rates chosen to equalize the NEB's, rather 

than with equal chipping rates.  In this way one is comparing the spectra of 

two or more waveforms having essentially equal performance, and it can then be 

judged which better fits the spectral constraints of the problem. 

Equalizing the NEB values tends to equalize the shapes of the mainlobe i 
portions of the spectra of different waveforms for a given value of IJ».  For 

example, in Fig. VII-3, the spectra of the first five PFM waveforms are 

compared, all with i|wr/2, and all with the same chipping rates, arbitrarily 

taken to be 100 MHz.  Spectral density is plotted, in dB, relative to its value 

at f"0. The actual spectral densities at the origin are different, of course, 

since each waveform has a different NEB.  The spectra of these same five 

waveforms (still with <|>-ir/2) are shown again in Fig. VII-4, but with chipping 

rates adjusted to equalize the NEB values.  For PFM} (MSK in this case), the 

chipping rate has been kept equal to 100 MHz, and the others adjusted 

accordingly, as lited on the figure, to attain the common NEB value of 61.685 

MHz.  These waveforms now have equivalent performance (if they are not band 

J 
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limited), but with the same differences already noted concerning sidelobe 

levels and asymptotic spectra.  However, the figure shows another method of 

comparison, namely chipping rate for a given NEB.  The same kind of comparison 

is made in Fig. VII-5 (equal chipping rates) and Fig. VII-6 (equal NEB) for 

the five PFM waveforms, this time with i|»-values chosen from Table VI-1, which 

identify "flat" spectra in each case. 

Cumulative spectra for the five PFM waveforms are given, on an equal NEB 

basis, in Fig. VII-7 (i|;-ir/2 in all cases) and Fig. VII-8 (Table VI-1 

^-values).  The corresponding chipping rates are the same as those shown on 

Figs. VII-4 and VII-6.  The effect of equalizing the NEB values on mainlobe 

shape is seen again in these figures, which are analogous to the 

equal-chipping-rate cumulative spectra of Figs. VI-16 (I|>«TT/2) and VI-17 

(Table VI-1 \|»-values).  All of these cumulative plots show an inversion in 

ordering among the PFM waveforms, in that PFM has the lowest first sidelobe, 

and the slowest asymptotic decay, while higher-order PFM waveforms have 

progressively higher sidelobes and faster asymptotic decay. 

Significant differences in mainlobe shape appear when waveforms with 

different i|/-values are compared, even when they are equalized with respect to 

NEB.  In Fig. VII-9, relative spectra are shown for three waveforms, all 

adjusted to the same NEB.  The waveforms are BPSK, MSK (PFM at ^-v/Z)  and 

"flat FSK" (PFM at I|>-5TT/8).  The NEB is 100 MHz in all cases, achieved with 

fchip-100 MHz for BPSK, and with the chipping rates shown In Fig. VII-10 for 

the other waveforms.  Note that "flat FSK" attains the same NEB performance as 

/^ unfiltered BPSK with essentially the same chipping rate, but with superior 

spectral shape out of the central band of frequencies.  MSK, on the other 

hand, requires a higher chipping rate to match the NEB value, and exhibits a 

spectral decay less rapid than "flat FSK", especially before the first 

eidelobe.  The same comparison is shown in Fig. VII-10 in terms of cumulative 

spectra, which emphasizes the differences in spectral behavior outside the 

4       mainlobe. 

This kind of comparison is continued in Figs. VII-11 through VII-18 for 

the other PFM waveforms.  In each case we compare BPSK, PFM (<J>-ir/2) and PFMn 

(Table VI-1 ^-values), in both relative spectra and cumulative spectral form. 
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KV NEB and BPSK chipping rate is 100 MHz in all these cases, and the 

corresponding PFM chipping rates are shown on the figures illustrating 

cumulative spectra. The following table summarizes the different values of 

NEB/f . . which govern the chipping rates used on these curves. 
chip 

TABLE VII-1 

Waveform 

BPSK 

PFM 
1 

PFM„ 

PFM„ 

PFM, 

PFM. 

PFM, 

PFM„ 

PFM, 

PFM. 

PFM, 

"""chip Value8 

ij/-value 
«•''chip 

- 1 

ir/2 0.61685 

w/2 0.68269 

w/2 0.72203 

*/2 0.74901 

w/2 0.76905 

5w/8 0.96353 

19TT/32 1.00847 

37 IT/ 64 1.02488 

9ir/16 1.00502 

9ir/16 1.04070 

In Table VII-1 the NEB/fcnip values for the PFM waveforms with Table VI-1 

Rvalues do not make a smooth sequence, because these Rvalues were essentially 

eyeball choices, and values of NEB*A near unity are attained in all cases. 
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VIII.  SUMMARY AND CONCLUSIONS 

The motivation for the study of spreading modulations was discussed in 

some detail in Section I.  The chief objective is to utilize an instantaneous 

bandwidth which is much greater than the information rate, and is thus 

diametrically opposed to the objective of bandwidth conservation in 

conventional data transmission systems.  Spreading is achieved by subdividing 

information bits into many chips, coded with dummy bits which are known (in 

effect) to the receiver, but appear random to a potential jammer. 

Performance measures for spread-spectrum systems are different from those 

of ordinary data communications systems, although constant-envelope waveforms 

with compact spectra are desirable in both cases.  Rapid spectral decay outside 

the principal band is advantageous, and, in the case of spreading modulations, 

spectral flatness within this band leads to high performance.  The spread- 

spectrum designer wants high noise-equivalent-bandwldth (which determines 

performance against an optimizing jammer) at the lowest possible chipping rate, 

while the communicator, considering the same waveform for data transmission, 

wants to maximize bit rate for a given allowed bandwidth.  These issues are 

discussed in this report in terms of two measures of performance, the so-called 

spreading efficiency and the chipping factor.  In all cases, performance is 

related to processing gain, which depends strongly on the spectral density of 

the waveform in question. 

A classification system is introduced for spreading modulations, and 

several familiar examples are illustrated in their appropriate place.  This 

system makes it easy to invent new waveforms, and a number of these are given 

in the report.  A simple method of computation of spectra is developed, based 

upon a representation theorem which allows all of the waveforms studied to be 

described in terms of sums of phase-modulated pulses, formally very similar to 

BPSK.  This permits the derivation of spectra of constant-phase waveforms 

(which is not complicated) to be extended directly to the large class of so- 

called binary FM waveforms. 

Examples of binary FM waveforms, like FSK and SFSK, which have been 

discussed in the literature, are introduced in Section V, and their spectra 

illustrated.  A general relationship between the spectral properties far from 
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band center and the smoothness of the frequency modulation pattern 

characteristic of the waveform is derived.  This relation suggests a "graded 

sequence" of waveforms, with controlled asymptotic properties, and these are 

introduced in Section VI.  A "smoothness index", n, characterizes the members 

of this family. 

Another basic parameter, called tyt   is the magnitude of the total phase 

change per chip in the binary FM waveforms.  Waveforms used for information 

transmission are usually characterized by the value ip"ir/2, but we find that 

spreading performance is often much better when other values, intermediate 

between TT/2 and TT, are used.  Each spreading waveform is described by an 

instantaneous frequency modulation, and i|> is basically a multiplicative factor 

in this modulation, hence one automatically has a family of waveforms, 

parametrized by \|>, whenever a frequency modulation pattern is given.  This 

allows generalization of all the familiar modulations, such as SFSK, Just as 

FSK waveforms are generalizations of MSK.  Each of the "graded sequence" 

waveforms, called polynomial FM modulations, is actually a family, with \\>  as 

parameter. 

It is shown that the spectral properties of spreading modulations of the 

binary FM type are largely determined by the values of the two parameters, n 

and i|».  The actual chipping rate, f . . , of the waveform must be considered a 

third parameter, which acts as a scale factor on the frequency axis, stretching 

or compressing the spectrum.  When operating within a given allotted frequency 

band, an optimum choice of chipping rate can be found for any waveform. 

A number of tradeoffs appear in the results of this report.  Noise- 

equivalent-bandwidth versus chipping rate, and sidelobe levels versus 

asymptotic spectral behavior are typical examples.  These are discussed at some 

length, and many of the figures have been designed to illustrate them. 

Hardware issues are not discussed here, although large variations in 

implementation difficulty exist among these waveforms.  The reasoning is simply 

that the spectral properties of a waveform are fixed, while the difficulty of 

using it continually changes with development of the requisite technology. 

ä 
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APPENDIX A 

MEASURES OF SPREADING PERFORMANCE 

We consider a given pulse (or signal segment) which is represented by a 

transmitted waveform modulation s(t, b), which is T seconds in duration.  This 

waveform is characterized by the bit-sequence b - bj b£ ... bjj (i.e., a 

spreading code) and may, for example, be a constant-envelope waveform such as 

BPSK or FSK.  The function s(t, b) represents the complex modulation of some 

carrier, and we assume it is normalized as follows, independent of the 

bit-pattern: 

T 
/ |s(t, b)|2 dt - 1 
o 

The spreading code changes frequently, and is always known to the 

receiver, but we constrain the jammer to a knowledge only of the spectral 

density of the family of waveforms (ensemble average over random 

bit-sequences), as might be obtained by averaging many observed spectra.  The 

jamming waveform is modelled as stationary random noise with unlimited 

spectral agility (i.e., the jammer is capable of generating noise with 

arbitrary power spectral density), but finite total power. 

The received waveform is modelled as 

Z(t, b) - A e*ä s(t, b) + N(t) 
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1 

iv 

where N(t) is complex noise with spectral density Gfl(f), i.e., 

E N*(t) N(t') - / GN(f) «2*±f<t»-t) df  . 
—00 

The total noise power is PN: 

OS 

*H - / %(f) df. 

which includes jamming and receiver noise (also assumed to be finite), and we 

define the normalized noise spectral density 

gN(f) - GN(f>/*N  , 

which obviously integrates to unity. 

The average power of the received signal is 

PS - A2/T 
•f\-' 

pi        (averaged over time, not rms), and the input SNR may be taken to be 

i* 

r* We assume that the receiver is synchronized, but does not know carrier 

phase.  It is modelled as a filter whose output at the time of decision is 
-• 

-'S 

S 
L •-••--•-•.- 

PS    A2 
(SNR)ln - — -   

5(b) - / h*(t, b) Z(t, b) dt  . 

10A 



P| ». .. i 4 . w^yuy.. L».... ,.. . .. y T^T^T" . • i • . » '. ' . ''. ' ^ ' « * ** •'•'••» »••'»•!•.».••.•• i • . » » • » • ii 

v 

The impulse response of this filter depends on the known bit-pattern, end 

decision is based on the magnitude of i.  This filter output contains signal 

and noise: 

1 

k" 

L*. 

K 

i 

where 

«(b) - s(b) + n(b) 

»(b) - Ae*-« / h*(t, b) s(t, b) dt 

and 
00 

n(b) - / h*(t, b) N(t) dt  . 
—00 

The system output SNR is defined in an analogous way: 

(SNR)out 

IE s(b)|2 

E|n(b)|2 

where the ensemble average symbolized by E includes the random bits as well as 

the noise N(t). 

In terms of the Fourier transforms 

m 

S(f, b) - / s(t, b) e-2*lft dt 

and 

H(f, b) - / h(t, b) e-2*i«t dt ( 

we have 

105 

M 

^ • _ _ • _. • . -*- -• - > ^ .z^_ ."- •-- .'  -•- •'- . - ^_J^^-m  -.-•-.-. i_- 

. • . • .  .   .•-•.] 



."•••V - *"* .L '!'"•".''.',' * * •*.' •". •T* .».,'-' •''**•'* t;* • • • • • •: '•* T 

and 

E s(b) -Ae" / E{H*(f, b) S(f, b)} dt 

E |n(b)|2 - // E{h(t, b) h*(t\ b)} E{N*(t) N(t')} dtdt« 

L- V 

* 

PN / gN(f) E|H(f, b)|2 df. 

Therefore, 

A2 
(SNR)out - — . 

/ E{H*(f, b) S(f, b)} df|2 

/ gN(f) E|H(f, b)|2 df 

- •   I - 

•:-> w 
'.-.* 

To obtain our first performance parameter we now assume that the receiver 

uses a white-noise filter matched to the transmitted waveform, but truncated 

outside a symmetrical band of width B.  This truncation is our means of 

recognizing a spectral containment constraint, and it is immaterial whether 

the band limiting is effected in the transmitter or the receiver. We retain 

our definition of the input SNR, which uses the unlimited signal waveform, so 

that the processing gain, defined as 

(SNR) out 
PG =    , 

(SNR) in 

f tt> 

reflects the loss of signal energy due to band11mlting. 
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The receiver filter is thus given by 

S(f, b) ; Ifl < B/2 
H(f, b) - 

0    ; Ifl > B/2 

and therefore 

E{H*(f, b) S(f, b)} - E|H(f, b)|2 

gs(f) ; |f| < B/2 

0  ; Ifl > B/2 

where 

g8(f) = E|S(f, b)|2 

is the signal power spectral density (ensemble average over bit sequences). 

This density is normalized to unity over all frequencies: 

/ g8(f)df - E / |s(t, b)|2 dt - 1 , 

by our original convention for the signal waveform. 

The processing gain, using this (white-noise) matched filter against the 

noise spectral density gN(f), is now found to be 

2 

PG - T . 
{j 8-(f»df [ 
/ 8N(f)g8(0 df 
B 

where the integrals are to be carried out over a symmetrical band of 

frequencies of width B. 
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1 The jammer is now allowed to optimize his spectral density, keeping the 

total jamming power fixed.  His best choice will maximize the denominator in 

our expression for PG, which occurs when he concentrates all his power at the 

frequency, fm at which g8(f) achieves the peak of its values within the band 

B. This optimum choice provides a lower bound to the processing gain obtained 

with the given signal class and receiver design: 

2 

PG > T -i- 

/g8(f)df 

B 

Max g8(f) 
B 

Now the noise-equivalent-bandwidth of the band-limited signal is defined 

by the relation 

/gs(f) df 
B 

(NEB)B 

Max g8(f) 
B 

The corresponding noise-equivalent-bandwldth of the original waveform would 

be 

/ g8(f)df 
1 

(NEB), -    -    . 
Max g8(f)      Max g8(f) 
f f 

.•        In terms of (NEB)g, we have 

«" 
V 

ft PG > T(NEB)B • / g8(f) df. 
•^J B 
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Because of our normalization, the factor 

FB = | 8s(f) « 

Is just the fraction of the energy of the original waveform which lies within 

the band B.  Normalizing our processing gain bound to the nominal value TB, we 

have 

PG > noTB 

where 

(NEB)B 
n0 

r    F„ < 1 . 

This parameter provides the desired measure of waveform performance, given 

that the receiver uses a white-noise matched filter. 

Another parameter Is obtained if we allow more freedom in the receiver 

design.  Specifically, we let 

H(f, b) - 
C(f) S(f, b) ;  |f| < B/2 

0       ;  Ifl > B/2  , 

where C(f) is a real positive function of frequency to be chosen presently. 

This filter may be thought of as a truncated version of a colored-noise filter 

matched to S(f, b), where the noise spectral density assumed is proportional 

to [C(f)]-1. 
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3 
The processing gain for a given jammer is now given by 

2 
/ C(f) g8(f) df 
B 

PG - T . 
/ C2(f) gN(f) g8(f) df 

Again the optimum jamming strategy is the use of a line spectrum at fm, the 

frequency at which the product c2(f) g8(f) is a maximum, within the band B. 

The corresponding lower bound to the processing gain is 

2 

PG > T . 

/ C(f) g8(f) df 
B 

C2(fm) g8(fm> 

. T 

The factor 

C(f) • g8(f) 

B C(fm) ZglTfaT 
/ / g8(f) df 

C(f) / g8(f) 

C(fm) /gsTC) 

is an arbitrary real positive function within the band, except that it is 

bounded from above by unity. By choosing this function to be identically 

unity, we obtain the filter for which the processing gain lower bound is 

maximized.  This "miminax" filter is 
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1 
•y 

m  « 

I 

H(f, b) 
[g8(

f)l"1/2 s<f. b> ; lfl < B/2 

o ; lfl > B/2 

and the bound obtained is 

PG > T / /17ÖÖ df 
B 

n TB  . 

This corresponding efficiency parameter is now 

,2 
1 

n - - 
B 

/ /IsTfT df j 
B 

By the Schwarz Inequality, n is never greater than unity, since 

» 

/ /IsTf) df   < / g8(f)df . / df < B  , 
B (    B B 

I 
to 

in view of the normalization of gs(f).  It is also clear that n would achieve 

this bound for a signal spectrum which is flat within B and zero elsewhere, 

which is of course incompatible with the assumption that s(t, b) vanishes 

outside the interval [0, T]. 

It is interesting to note that the minimax filter has a flat amplitude 

characteristic, on the average, and hence the noise power received is 

Independent of the noise distribution within the band B.  The noise spectral 

density can, in fact, be flat: 

8N<*> 
1/B     ;   |f|   < B/2 

o       ;   Ifl   > B/2  , 
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i 

Ü 

to 

« 

ft 

without changing the processing gain, which we may call PGj: 

PGj = T / ZisTfTdf 
B 

If we knew that the noise would be flat, we would use the white-noise band- 

limited matched filter, say H2: 

H2(f, b) S 
S(f, b) ; |f| < B/2 

0   ; |f| > B/2 

and obtain the higher processing gain PG2: 

PG2 - TB J / g8(f) df 
B 

according to the formula derived earlier.  PG, cannot exceed PG2 by the 

Schwarz Inequality, as just demonstrated above. 

However, if we use H2 and then let the jammer optimize against us, he 

will pick 

gN(f) - 5(f - fm) , 

where fm Is at the peak of g8(f) within B, and the processing gain will be 

reduced to PG3: 

PG3 - T 
Max g9(f) 
B 

/ gs(f) df 
B 
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as derived before.  Since the rainimax/fliter optimizes against an optimizing 

jammer, PG3 must be less than or equal to PGj, and this follows from the 

inequality 

/ g8(f) df < Max / g8(f) . / • gB(f) df  . 
B B B 

With the minimax filter the jammer can do no better than with white 

noise, but the receiver does not use the white-noise matched filter.  All 

these distinctions disappear for the "ideal signal", whose spectral density is 

flat within the allotted band and negligible elsewhere.  In this limit, 

PGi - PG2 - PG3 - TB. 

When we compare spreading modulations, the chipping rate is a parameter 

for each case, hence it is natural to consider efficiency as a function of 

chip rate for each waveform, such as BPSK, MSK etc.  This comparison is 

facilitated by introducing the dimensionless variable, 6 = 2irfA, in place of 

frequency, where A is the chip duration (i.e., A~* - fc is the chipping rate), 

and the dimensionless parameter 

x = BA - B/fc . 

We define 

1 
g(6) =    g8(f) , 

A 

so that 
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1 
— / g(e) de - l. 
2if -» 

This quantity, g(6), is the same as the normalized spectral density used in 

the main text. The matched-filter efficiency parameter, n0, is expressed in 

terms of g(9) by the formula 

2 

*o 
B  Max  g8(f) 

|f|<B/2 

2 
!nx     d6 ) 

/ 8(6) -\ 
-TTX        2lT ) 

x  Max   g(6) 
|e| <   irx 

or (  irx    de 

/ 
A    | o 

n0(x) - — 

2 
c   de ) 
g(e)—} 

2M) 

x     Max    g(6) 
o<e<*x 

In the last step we have assumed that gs(f) is symmetrical.  For each type of 

spreading modulation, g(e) is a unique function of 9, and the effect of 

variation of chip rate for a given bandwidth, B, is represented by the 

dependence of n0 on the dimensionless parameter x. 
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The minimax efficiency parameter, n, is also expressible in the simple 

form 

n(x) - —  ) / /^TeTae 1 

2ir 

Figure A.la provides a comparison of BPSK, MSK and FSK for the special 

value \\>  - 1.9905, using the matched filter measure of efficiency.  Figure A. lb 

is a similar comparison using the minimax filter. Note that the minimax filter 

provides more processing gain against the optimizing jammer in all cases, but 

that the difference is slight for the special FSK.  The difference would 

vanish altogether for an ideal spectrum, flat within a band and zero 

elsewhere.  In Fig. A.2a FSK waveforms are compared with ty  as a parameter, 

using the matched filter efficiency criterion.  Figure A.2b is a similar plot 

using the minimax filter efficiency.  The optimum efficiency occurs for the 

values v^ — 2-2 (minimax) and tp — 2.0 (matched filter), but the maxima are 

broad in both cases. 
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